Outils de Deep Learning pour le suivi d'oiseaux marins : approches supervisées et modèles génératifs

Amédée Roy^{1,2}, Ronan Fablet², Sophie Lanco Bertrand¹

¹ Marbec, IRD, Sète, France ² IMT Atlantique, Brest, France

Bretagne-Pays de la Loire École Mines-Télécom

 \searrow Introduction \bigotimes Supervized Learning \bigotimes Generative Models \bigtriangledown Perspectives \bigotimes

Deep Learning

\rightarrow What is Deep Learning?

 \rightarrow What is a NN?

<u>Neural Network = a composition of many elementary functions</u>

 \rightarrow What is a NN?

<u>Neural Network = a composition of many elementary functions</u>

 \rightarrow What is a NN?

<u>Neural Network = a composition of many elementary functions</u>

y

> x

 \rightarrow How to train a NN?

 \rightarrow How to train a NN?

 \rightarrow How to train a NN?

 \rightarrow How to train a NN?

\gg Introduction

Roadmap

Supervized Learning

- \rightarrow Identification of breeding habitat from satellite data
- \rightarrow Segmentation of GPS tracks to detect dives

Generative Models

- → Simulation of seabird foraging trajectories
- \rightarrow Climate-based prediction of trajectories

 \gg Introduction \gg Supervized Learning

Identification of breeding habitat

→ Problem Overview

Antonio Garcia-Quintas (IRD, Universidad de La Habana)

$- f_{\theta} \longrightarrow \blacksquare \blacksquare$

Habitat description :

- satellite
- 10 km radius around site

Breeding site presence/absence

\gg Introduction \gg Supervized Learning

Identification of breeding habitat \rightarrow Data Overview Sabana-Camagüey Archipelago Los Colorados Archipelago Jardines de la Reina Archipelago Canarreos Archipelago

 \star

Available area with the potential breeding localities

50 Registered breeding localities

Identification of breeding habitat \rightarrow Results

- Precision = 0.90
 - Recall = 0.99
 - F-score = 0.95

Segmentation of GPS tracks

→ Problem Overview

GPS track :

- step speed / turning angle
- 20 steps window

Dive occurences :

• TDR data threshold

 \gg Introduction \gg Supervized Learning

Segmentation of GPS tracks → Results

• Network training

Segmentation of GPS tracks \rightarrow Results

Network transfer

Masked booby (Sula dactylatra)

20

25

30

Simulation of foraging trips

→ Generative Adversarial Networks

Random noise :

• samples from a predefined distribution

Realization of a stochastic process :

- 200 steps trajectories
- longitude / latitude / dives

 \rightarrow Introduction \rightarrow Supervized Learning \rightarrow Generative Models

Simulation of foraging trips

→ Generative Adversarial Networks

Simulation of foraging trips \rightarrow Result

Peruvian booby (Sula variegata)

amedee.roy@ird.fr

Simulation of foraging trips \rightarrow Result

Peruvian booby (Sula variegata)

10

Simulation of foraging trips \rightarrow Example of application

Generation of Pseudo-Absence

Presence/Absence occurrences

🗻 covariable

Andreas Ravache (IRD, UMR Entropie)

Climate-based prediction of trajectories → Problem Overview

Environmental data

Climate-based prediction of trajectories → Data Overview

Peruvian booby (Sula variegata)

Climate-based prediction of trajectories \rightarrow Results

Peruvian booby (Sula variegata)

True data

Simulated data

Perspectives

- → Supervized Learning
- Landscape analysis (e.g. classification of habitat)
- Behavioural studies (e.g. track segmentation)
- Population monitoring (e.g. counting individual)

\rightarrow Generative models

- Movement modeling (e.g. landscape, social interactions)
- Data interpolation (e.g. upsampling, filling gaps)
- Scenario simulation (e.g. impact of climate change)

Challenges

- → Supervized Learning
- Need of labelled data
- Generability: can I transfer my network for a similar task?
- Explainability: what does my network understand?

- \rightarrow Generative models
 - Oscillation: non-convergence
 - Mode collapse: G produces the same few patterns
 - Evaluation metrics: how good G approximates the data?

Take-home message

Deep Learning is a family of tools based on deep networks

- **Deep Networks** are parametric models that are trained to minimize a certain loss function
- 03
- **Supervized Learning** is used to map an input to output based on input/output pairs

Generative Models are used to learn data distribution

Many applications for **Seabird Ecology**

Thank you for your attention!

Sophie Lanco Bertrand

Ronan Fablet

Antonio Garcia-Quintas

Guilherme Tavares Nunes

Andreas Ravache

