

Trophic ecology of the Balearic shearwater in the Bay of Biscay

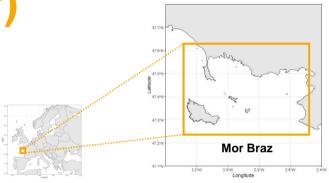
Beñat Iglesias¹, Paco Bustamante², Jerome Fort², Adrien Lambrechts³, Maite Louzao¹

- 1. AZTI Marine Research, Basque Research and Technology Alliance (BRTA)
- 2. Littoral Environnement Et Sociétés (LIENSs), UMR 7266, CNRS-La Rochelle Université
- 3. Office Français de la Biodiversité (OFB)

plan national d'actions en faveur du Puffin des Baléares

Background

- Balearic shearwaters visit the BoB during non-breeding season
- They seem to feed on epipelagic and demersal species, but no stomach content analysis published in the BoB
- Fisheries discards seem to be important in their diet
- Stable isotopes reveal trophic relationships and habitat use
- Bayesian isotopic mixing models estimate food source contributions



Sample collection (predator)

Balearic shearwater (*Puffinus mauretanicus*)

- Blood samples of 30 individuals captured with a netgun in Mor Braz (France)
- Part of the National Action Plan 2021-2025 for the Balearic shearwater
- August 2022
- Stable isotope analysis (δ^{13} C and δ^{15} N) at LIENSs

Sample collection (prey)

Prey selection criteria

- Potential prey selected in a previous study conducted in the BoB (Meier et al. 2017)
 - Sardina pilchardus
 - Engraulis encrasicolus
 - Trachurus trachurus
 - Scomber scombrus
 - Micromesistius poutassou

- Trisopterus spp
- Merluccius merluccius
- Microchirus variegatus
- Loligo spp

Tracking, feather moult and stable isotopes reveal foraging behaviour of a critically endangered seabird during the non-breeding season

Rhiannon E. Meier¹*, Stephen C. Votier², Russell B. Wynn¹, Tim Guilford³, Miguel McMinn Grivé⁴, Ana Rodríguez⁵, Jason Newton⁶, Louise Maurice⁷, Tiphaine Chouvelon^{8,9}, Aurélie Dessier⁸ and Clive N. Trueman¹⁰

- Trophic evidence found in previous stomach content analysis study conducted in the Mediterranean sea (Louzao et al. 2015)
 - Nyctiphanes couchii

EVIDENCE OF KRILL IN THE DIET OF BALEARIC SHEARWATERS $PUFFINUS\ MAURETANICUS$

MAITE LOUZAO 1,2 , DAVID GARCÍA 3,4 , BENEHARO RODRÍGUEZ 3,5 & PERE ABELLÓ 6

10

Prey

MATERIAL & METHODS

Sample collection (prey)

Isotopic data acquisition

From Iglesias et al. 2023

From Chouvelon et al. 2012

From López-López et al. 2017

Influence of seasonal variability on the trophic structure of pelagic communities

Beñat Iglesias ¹⁴, Maite Louzao¹, Eneko Bachiller¹, Lucía López-López², María Santos¹, Guillermo Boyra¹, Eider Andonegi¹, Unai Cotano¹ and Izaskun Preciado²

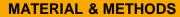
Revisiting the use of δ^{15} N in meso-scale studies of marine food webs by considering spatio-temporal variations in stable isotopic signatures – The case of an open ecosystem: The Bay of Biscay (North-East Atlantic)

T. Chouvelon ^a, J. Spitz ^{a,b}, F. Caurant ^a, P. Mèndez-Fernandez ^a, A. Chappuis ^a, F. Laugier ^a, E. Le Goff ^a, P. Bustamante ^{a,*}

Does upwelling intensity influence feeding habits and trophic position of planktivorous fish?

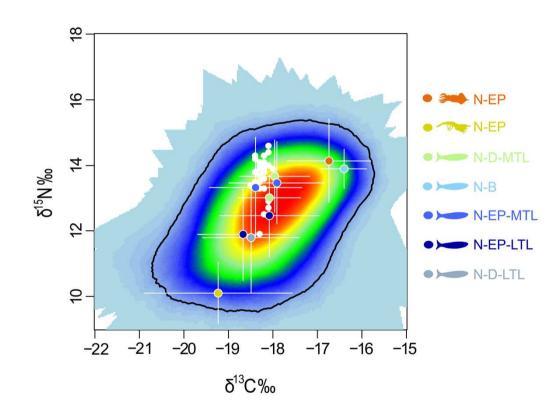
Lucia Lopez-Lopez^{a,*}, Izaskun Preciado^a, Isabel Muñoz^a, Moira Decima^b, Juan Carlos Molinero^c, Elena Tel^d

MATERIAL & METHODS


Diet estimation

Bayesian isotopic mixing models

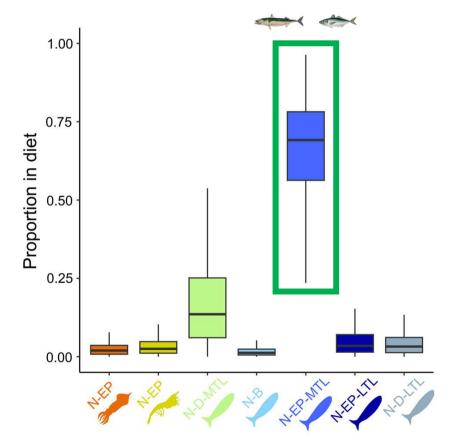
- MixSIAR R package (Stock and Semmens 2016) to estimate the diet
 - Diet to tissue discrimination factor (DTDF): $\delta^{13}C = 0.9 \pm 0.5\%$ and $\delta^{15}N = 1.7 \pm 0.5\%$ (Ramos et al. 2009)
 - A mixing polygon was built to identify predator individuals whose isotopic composition might not align with the expected prey sources
 - Prey grouping to strength the model accuracy
 - 1. Taxonomic groups: fish, cephalopod or crustacean
 - 2. Horizontal habitat: oceanic or neritic
 - 3. Vertical habitat: epipelagic, demersal or benthic
 - 4. Trophic level: low, mid or high



Mixing polygon

All individuals inside

- White dots: Balearic shearwater individuals
- Coloured dots: potential prey species
- Each color: prey group



Diet proportion

- Highest proportion (65.4%) for epipelagic mid-trophic level fish (*T. trachurus* and *S. scombrus*)
- 17.6% for demersal mid-trophic level fish (*M. merluccius* and *Trisopterus spp*)
- Low proportion for remaining prey (<5%)

Conclusions

- Piscivorous species
- Preference for epipelagic fish (+70%): swimming and hunting abilities or foraging on discarded fish
- Importance of fishing discards: Approximately a quarter of their diet composition consisted of demersal and benthic species (23.7%)

